Supplementary Note

alpine fragment sequence bias model

For each sample and each transcript (each isoform of a gene), counts (0,1,2,...) of aligned
paired-end fragments are tabulated based on the starting position p of the read closest to
the start of the transcript and the length of the fragment [ into a matrix M. The following
model applies to paired-end RNA-seq fragments, but could be modified for single-end data
by inferring approximate fragment lengths. Fragments with start and end positions which
were not observed will have M, = 0. For computational efficiency, the range of [ is limited
to the middle ~99% of the empirical fragment length distribution. For the IVT-seq samples,
the center of the distribution was defined by [ € [100, 350] and for the GEUVADIS samples,
[ € [80,350], with a total of L possible fragment length values considered. Note that most
entries of M will be 0. For estimating bias parameters and evaluation of predicted coverage,
the fragments which begin on the first basepair or end on the last basepair of a transcript
are not included, as large counts for these potential fragments could impair estimation of
the coeflicients for coverage biases within the body of the transcript. The matrix M then
represents nearly all of the potential fragment types that could arise from a given transcript.
Paired-end reads which are compatible with multiple isoforms are assigned to each of the
transcript matrices M, as long as the fragment length is within the range defined above.
The counts in the matrix are modeled on a number of features including:

e The fragment’s length, [.
e The relative position of the fragment in the transcript.
e The GC content of the fragment (and other features of the fragment sequence).

e The sequence in a 21 bp window around the starts of the two paired-end reads. The
Cufflinks variable length Markov model (VLMM) for random hexamer priming bias
described by Roberts et al. [1] is used.

For notational simplicity in the following sections, the counts in the matrix M are
collapsed into a vector Y indexed by j such that Y} is a count for the j-th potential fragment

type.

Estimating bias offsets and coefficients

Bias terms are estimated using a subset of the genes that have only one isoform, which
avoids the task of probabilistic assignment of the fragments from different isoforms of a
gene. The bias terms were estimated across the 64 transcripts in the IVT-seq dataset
(in two batches for cross-validation), across 100 medium to highly expressed genes in the
GEUVADIS dataset, and across 200 genes for the SEQC and ABRF datasets. In this
section, we distinguish model terms into two groups: bias offsets, which are calculated
independently of other terms, and bias coefficients which are estimated within a Poisson
generalized linear model (GLM) described below. The offsets are included as fixed terms
in the GLM when estimating the coefficients. For calculating all bias terms, the fragments



from highly expressed genes are down-sampled, so that each gene contributes nearly equally
according to an initial estimate of FPKM (without bias correction) to the model terms. This
is similar to a weighting procedure for bias parameter estimation used by Roberts et al. [1].

Two offsets are calculated using the fragments that align to genes with a single isoform.
The first is an offset for the fragment’s length (FL). An empirical distribution of fragment
lengths is calculated by examining the lengths of fragments aligning to the given subset of
genes. The log of the kernel density estimate of fragment lengths evaluated at each fragment
length [ defines the fragment length offset.

The second offset is for read start sequence preferences (RS) caused by differential bind-
ing efficiencies of random hexamer primers [2]. For this, alpine includes an implementation
of the 21 bp VLMM for read starts proposed by Roberts et al. [1] and used in the bias cor-
rection method of Cufflinks. The model defines the probability of observing a read aligning
to a position, given the sequence context surrounding the read start position. The VLMM
is defined by the following sequence: four O-order positions, followed by three l-order po-
sitions, ten 2-order positions, two l-order positions, and finally two 0-order positions. A
0-order position corresponds to frequencies for the four nucleotides at the given position, a
1-order position to frequencies for di-nucleotides ending on the given position, and so on.
The read start position itself is the second of the ten 2-order positions (for a diagram, see
Supplementary Methods Figure 2 of Roberts et al. [1]). Observed frequencies are collected
by examining the position-specific nucleotide, di-nucleotide and tri-nucleotide frequencies
surrounding the read starts of fragments aligning to the given subset of genes (5’ and 3’ reads
tabulated separately). Expected frequencies are estimated from the given subset of genes
assuming a uniform distribution of fragments to all positions (5" and 3’ separately). The
read start bias offset for a given fragment type j is the log of the observed over expected
probabilities according to the VLMM for 5 and 3’ read start positions added together.
Positions without sufficient sequence context are not included in the observed frequency
calculations, and a truncated version of the VLMM is used for calculating the bias offset of
these potential fragments.

A number of coefficients are then included in a GLM. These coefficients include: a
natural cubic spline for the relative position (RP) of the fragment in the transcript with
knots at 0.25,0.5,0.75 and boundary knots at 0, 1; a natural cubic spline based on the GC
content for each fragment (GC) with knots at 0.4,0.5,0.6 and boundary knots at 0, 1; and
four indicator variables that indicate if the fragment contains a stretch (STR) of higher
than 80% or 90% GC content in a 20 or 40 bp sequence within the fragment.

These variables are used to construct a GLM that accounts for the biases described
above, specifically to model the count Y; of fragment j as:

Yj ~ Poisson()\?-)

log(A}) =~ XjuBh + 05 + g
k

where k indexes the columns in the design matrix X and S is the matching coefficient.
The matrix X contains the spline basis vectors for relative position and fragment GC
content, and the four indicator variables for GC stretches. The o; term represents the offset



for the fragment length and optionally the read start bias for fragment j. The g; term
represents any baseline differences in gene expression for the gene that fragment j aligns to.
For fitting the bias model to a collection of fragments across multiple genes, any differences
in gene abundance are nuisance parameters, which can be accounted for by adding gene-level
expression terms such as g;, or by down-sampling fragments such that all genes have nearly
equal initial FPKM estimates. Here we both use the down-sampling strategy described
earlier for calculating bias offsets, and any residual differences in gene-level expression are
removed by including the term g;.

The estimated coeflicients for relative position, GC content, and GC stretches are ob-
tained using the splines and speedglm R packages. We do not model an interaction between
fragment length and GC content of the fragment, as discussed by Benjamini and Speed [3],
because we were able to predict coverage drops with GC content alone and so to limit the
number of parameters in the model. However, such an interaction could be added at this
stage.

Predicted read start coverage

The predicted read start coverage for position p is defined as:

Bp= > A
Jre(@)=p
where ¢(j) = p indicates that the j-th potential fragment covers position p. Note that
the predicted coverage v, is only used for plotting and model comparison on the IVT-seq
dataset, and not for estimation of the coeflicients or transcript abundance. For estimation of
the coefficients and transcript abundance, only the fragment-level counts Y; and estimates
5\? are used.

alpine bias models per dataset

To concisely describe the bias models used, we introduce the following acronyms. For de-
scription and details on the estimation of these terms, see the preceding section, “Estimating
bias offsets and coefficients”.

RS | read start VLMM [1]
FL fragment length

RP relative position

GC | fragment GC content
STR | fragment GC stretches

The following terms were included in the bias models used to analyze the various
datasets. These terms were fitted using the model described above, where the inclusion
of multiple terms implies they have an additive effect on the log of the rate of fragment
counts. The read start and fragment length terms are pre-calculated as described above
and included as offsets.



dataset model RS | FL | RP | GC | STR
VT GC X X
IVT GC+str X X X
IVT read start | X | X
IVT all X | X X
GEU GC+str X | X X X
GEU |readstart | X | X | X
GEU all X | X | X X X
Sim GC X X
SEQC GC X | X X
ABRF GC X | X X

In the IVT-seq dataset, relative position (RP) was not included, as strong positional
bias was not observed, as opposed to the poly-A selected GEUVADIS, SEQC, and ABRF
datasets, which did exhibit positional bias.

Transcript abundance estimation

The estimated bias terms for a given sample can be used to improve the estimates of
transcript abundance for that sample for genes with a single isoform or multiple isoforms.
For fragment type j and isoform 4, the Poisson fragment rate is given by:

Aij = bia;

where A is a sampling rate matrix, and g represents the abundance of the different
isoforms of a gene, as described by Salzman et al. [4] and Jiang and Salzman [5]. a;; = 0 if
fragment type j could not arise from isoform ¢. If fragment type j can arise from isoform ¢,
one possible parametrization sets a;; = ¢(l;) N, where ¢ is the empirical density of fragment
lengths, [; is the fragment length of the j-th fragment type, and N is the total number of
fragments which are compatible with the annotated genes. Here, we included the fragment
length in the overall bias term 5\%, so we set a;; = 5\?]-]\7 /(L -10?) when fragment type j can
arise from isoform i. The denominator contains 10° and the range of the fragment lengths
L considered in the model, so that final estimates of 6 are on the FPKM scale.

5\% can be calculated using the estimated coefficients Bk and the estimated offsets 6;:

log(A)) = XjkBh + 0
p

Because we found that j\?j was identical across isoforms for nearly all fragments j, in this

paper to simplify the model we approximated )\?j with )\?. Note that ), 0; is not equal to
1, as these represent expression abundances, so they are only required to be non-negative.
The Poisson model defined here is the same model as proposed by Jiang and Salzman [5],
but here we explicitly model the bias using offsets 0, a matrix of features X, and a vector
of log fold changes 5 , S0 not the same /3 as defined by Jiang and Salzman [5].

The log likelihood for a given estimate 8 of the isoform abundances is evaluated by:



0(0)A) = Zlog f(y;, Z Aij)

where f is the probability density function for a Poisson random variable. The maximum
likelihood estimate of @ is obtained using an EM algorithm as described by Jiang and
Salzman [5], where fragment types j with no observed fragments need only be considered
for certain steps of the EM.

For genes with a single isoform, the maximum likelihood estimate for 6, given the esti-
mated bias terms 5\?, is:

9
L-10°) ;Y
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N> A
As the bias terms associated with GC content and relative position curves introduce
an arbitrary intercept, the estimates 6 for all transcripts for a sample are multiplied by a

scaling factor, X. This scaling factor is the average over all T' transcripts of the average bias
term over all J; fragment types within transcript ¢.
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For normalizing transcript abundances across samples, the 0 estimates are scaled using
the median-ratio method of DESeq [6].



Transcript quantification for GEUVADIS, simulated, SEQC, and ABRF
datasets

Cufflinks version 2.2.1 [1, 7] was run with bias correction turned on, with the commands:

cuffquant -p 40 -b genome -o cufflinks/file genes.gtf \
tophat/file/accepted_hits.bam

cuffnorm genes.gtf -o cufflinks cufflinks/filel/abundances.cxb \
cufflinks/file2/abundances.cxb ...

RSEM version 1.2.11 [8] was run with the commands:

rsem-prepare-reference --gtf genes.gtf genome rsem/hgl9

rsem-calculate-expression -p 20 --no-bam-output --paired-end \
<(zcat fastq/file_1.fastq.gz) <(zcat fastq/file_2.fastq.gz) \
rsem/hgl9 rsem/file/file

For the ABRF dataset, RSEM was run with the additional flag --estimate-rspd, as
this dataset exhibited differential positional bias across protocol. For the simulated data,
the flag ——no-polyA for rsem-prepare-reference was used.

kallisto version 0.42.4 [9] was run with bias correction turned on. The transcripts.fa
file was generated using rsem-prepare-reference. The following commands were used:

kallisto index -i kallisto_index transcripts.fa
kallisto quant --bias -i kallisto_index -o kallisto/file \
fastq/file_1.fasta fastq/file_2.fastq

Salmon version 0.6.0 [10] was run with bias correction turned on. The transcripts.fa
file was generated using rsem-prepare-reference. The following commands were used:

salmon index -t transcripts.fa -i salmon_index
salmon quant -p 10 --biasCorrect -i salmon_index -1 IU \
-1 fastq/file_1.fastq -2 fastq/file_2.fastq -o salmon/file

For the ABRF dataset, Salmon was run with the additional flag ——useFSPD, as this
dataset exhibited differential positional bias across protocol

Sailfish version 0.9.0 [11] was run with bias correction turned on. The transcripts.fa
file was generated using rsem-prepare-reference. The following commands were used:

sailfish index -t transcripts.fa -o sailfish_index
sailfish quant -p 10 --biasCorrect -i sailfish_index -1 IU \
-1 fastq/file_1.fastq -2 fastq/file_2.fastq -o sailfish/file

MISO version 0.5.3 was run on the GEUVADIS dataset using STAR aligned reads with
the following commands, assuming read of length 75 bp and a fragment length distribution
centered at 160 bp with a standard deviation of 30 bp:

index_gff --index genes.gtf miso_index
miso --run miso_index miso/file.bam --output-dir miso/file --read-len 75 \
--paired-end 160 30 -p 10
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